Generalized λ-Closed Sets and $(\lambda, \gamma)^{*}$ Continuous Functions

Alias B. Khalaf, Sarhad F. Namiq

Abstract

In this paper we introduce the concept of λ-open set and by using this set we define generalized λ-closed set we obtain

 some of its properties and also we define $(\lambda, \gamma)^{*}$-continuous function and study some of its basic properties.Index Terms-s-operation, λ-open, generalized λ-closed, $\lambda-T_{1 / 2}$ space, $(\lambda, \gamma)^{*}$-continuous function.

1 Introduction

THE study of semi open sets and semi continuity in topological spaces was initiated by Levine [5]. Analogous to the concept of generalized closed sets introduced by Levine [6], Bhattacharya and Lahiri [3] introduced the concept of semi generalized closed sets in topological spaces. Kasahara [4], defined the concept of an operation on topological spaces and introduced the concept of closed graphs of a function. Ahmad and Hussain [2], continued studying the properties of operations on topological spaces.

In this paper, we introduce new classes of sets called λ open and generalized λ-closed sets in topological spaces and study some of their properties. By using these sets we define $\lambda-T_{1 / 2}$ space and introduce the concept of $(\lambda, \gamma)^{*}$-continuous functions and study some of their basic properties.

2 Preliminaries

Throughout, X denote topological spaces. Let A be a subset of X, then the closure and the interior of A are denoted by $C l(A)$ and $\operatorname{Int}(A)$ respectively. A subset A of a topological space (X, τ) is said to be semi open [5] if $A \subseteq C l(\operatorname{Int}(A))$. The complement of a semi open set is said to be semi closed [5]. The family of all semi open (resp. semi closed) sets in a topological space (X, τ) is denoted by $S O(X, \tau)$ or $S O(X)$ (resp. $S C(X, \tau)$ or $S C(X))$. We consider λ as a function defined on $S O(X)$ into $P(X)$ and $\lambda: S O(X) \rightarrow P(X)$ is called an soperation if $V \subseteq \lambda(V)$ for each non-empty semi open set V. It is assumed that $\lambda(\phi)=\phi$ and $\lambda(X)=X$ for any s-operation λ.

[^0]
3λ-open set

Definition 3.1. [1] Let (X, τ) be a topological space and $\lambda: S O(X) \rightarrow P(X)$ be an s-operation, then a subset A of X is called a λ-open set if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$.
The complement of a λ-open set is said to be λ-closed. The family of all λ-open (resp., λ-closed) subsets of a topological space (X, τ) is denoted by $S O_{\lambda}(X, \tau)$ or $S O_{\lambda}(X)$ (resp., $S C_{\lambda}(X, \tau)$ or $\left.S C_{\lambda}(X)\right)$.

Proposition 3.2. For a topological space $(X, \tau), S O_{\lambda}(X) \subseteq S O(X)$.
Proof. Obvious
The following examples show that the converse of the above proposition may not be true in general.
Example 3.3. Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\}, X\}$. We define an s-operation $\quad \lambda: S O(X) \rightarrow P(X) \quad$ as $\quad \lambda(A)=A \quad$ if $\quad b \in A$ and $\lambda(A)=X$ otherwise. Here, we have $\{a, c\}$ is semi open set but it is not λ-open.

Definition 3.4. Let (X, τ) be a space, an s-operation λ is said to be s-regular if for every semi open sets U and V of $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 3.5. Let (X, τ) be a topological space and let A be a subset of X. Then:
(1) The λ-closure of $A(\lambda C l(A))$ is the intersection of all λ-closed sets containing A
(2) The λ-interior of $A(\lambda \operatorname{Int}(A))$ is the union of all λ open sets of X contained in A
(3) A point $x \in X$, is said to be a λ-limit point of A if every λ-open set containing x contains a point of A different from x, and the set of all λ-limit points of A is called the λ-derived set of A denoted by $\lambda d(A)$.
Proposition 3.6. For each point $x \in X, x \in \lambda C l(A)$ if and only if $V \cap A \neq \phi$, for every $V \in S O_{\lambda}(X)$ such that $x \in V$.
Proof. Straightforward.

Proposition 3.7. Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be any collection of λ-open sets in a topological space (X, τ), then $\cup A_{\alpha}$ is a λ-open set. Proof. Let $x \in \cup A_{\alpha}$ then there exist ${ }_{\alpha}^{\alpha \in I} \in I$ such that $x \in A_{\alpha 0}$, since A_{α} is a $\chi \chi$-open set for all $\alpha \in I$ implies that there exists a semi open set U such that $\lambda(U) \subseteq A_{\alpha_{0}} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$. Therefore $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ-open subset of (X, τ).

The following example shows that the intersection of two λ-open sets need not be λ-open.
Example 3.8. Let $X=\{a, b, c\}$ and $\tau=P(X)$. We define an soperation $\lambda: S O(X) \rightarrow P(X)$ as $\lambda(A)=A$ if $A \neq\{a\},\{b\}$ and $\lambda(A)=X$ otherwise. Now, we have $\{a, b\}$ and $\{b, c\}$ are λ open sets but $\{a, b\} \cap\{b, c\}=\{b\}$ is not λ-open.

Proposition 3.9. Let λ be an s-regular s-operation. If A and B are λ-open sets in X, then $A \cap B$ is also a λ-open set.
Proof. Let $x \in A \cap B$ then $x \in A$ and $x \in B$. Since A and B are λ-open sets, there exists semi open sets U and V such that $x \in U$ and $\lambda(U) \subseteq A, \quad x \in V$ and $\lambda(V) \subseteq B$. Since λ is a s-regular s-operation, this implies there exists a semi open set W of X such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V) \subseteq A \cap B$. This implies that $A \cap B$ is λ-open.
Proposition 3.10. Let (X, τ) be a topological space and $A \subseteq X$. Then A is a λ-closed subset of X if and only if $\lambda \bar{d}(A) \subseteq A$.
Proof. Obvious.
Proposition 3.11. For subsets A, B of a topological space (X, τ), the following statements are true.
(1) $A \subseteq \lambda C l(A)$.
(2) $\lambda C l(A)$ is λ-closed set in X.
(3) $\lambda C l(A)$ is smallest λ-closed set which contain A.
(4) A is λ-closed set if and only if $A=\lambda C l(A)$.
(5) $\lambda C l(\phi)=\phi$ and $\lambda C l(X)=X$.
(6) If A and B are subsets of space X with $A \subseteq B$. Then $\lambda C l(A) \subseteq \lambda C l(B)$.
(7) For any subsets A, B of a space (X, τ),

$$
\lambda C l(A) \cup \lambda C l(B) \subseteq \lambda C l(A \cup B)
$$

(8) For any subsets A, B of a space (X, τ),

$$
\lambda C l(A \cap B) \subseteq \lambda C l(A) \cap \lambda C l(B)
$$

Proof. Obvious.
Proposition 3.12. Let (X, τ) be a topological space and $A \subseteq X$. Then $\lambda C l(A)=A \cup \lambda d(A)$.
Proof. Obvious.
Proposition 3.13. For a subset A of a topological space $(X, \tau), \quad \lambda \operatorname{Int}(A)=A \backslash \lambda d(X \backslash A)$.
Proof. Obvious.
Proposition 3.13. For any subset A of a topological space X. The following statements are true.
(1) $X \backslash \lambda \operatorname{Int}(A)=\lambda C l(X \backslash A)$.
(2) $\lambda C l(A)=X \backslash \lambda \operatorname{Int}(X \backslash A)$.
(3) $X \backslash \lambda C l(A)=\lambda \operatorname{Int}(X \backslash A)$.
(4) $\lambda \operatorname{Int}(A)=X \backslash \lambda C l(X \backslash A)$.

Proof. Obvious.

Theorem 3.14. Let A, B be subsets of X. If $\lambda: S O(X) \rightarrow P(X)$ is an s-regular s-operation, then:
(1) $\lambda C l(A \cup B)=\lambda C l(A) \cup \lambda C l(B)$.
(2) $\lambda \operatorname{Int}(A \cap B)=\lambda \operatorname{Int}(A) \cap \lambda \operatorname{Int}(B)$.

Proof. Obvious.

4 Generalized λ-Closed Set and $\lambda-T_{1 / 2}$ Space

In this section, we define a new class of sets called generalized λ-closed set and we give some of its properties.
Definition 4.1. A subset A of a topological space (X, τ) is said to be generalized λ-closed (briefly. g - λ-closed) if $\lambda C l(A) \subseteq U$, whenever $A \subseteq U$ and U is a λ-open set in (X, τ).

We say that a subset B of X is generalized λ-open (briefly. g - λ-open) if its complement $X \backslash B$ is generalized λ closed in (X, τ).

In the following proposition we show every λ-closed subset of X is g - λ-closed.
Proposition 4.2. Every λ-closed set is g - λ-closed.
Proof. A set $A \subseteq X$ is λ-closed if and only if $\lambda C l(A)=A$. Thus $\quad \lambda C l(A) \subseteq U$ for every $U \in S O_{\lambda}(X)$ containing A.

The reverse claim in the above proposition is not true in general. Next we give an example of a g - λ-closed set which is not λ-closed.

Example 4.3. Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as $\lambda(A)=A$ if $A=\{a\}$ and $\lambda(A)=X$ otherwise. Then, if we let $A=\{a, b\}$, and since the only λ-open supersets of A is X, so A is g - λ-closed but it is not λ-closed.

Proposition 4.4. The intersection of a g - λ-closed set and a λ closed set is always g - λ-closed.
Proof. Let A be $g-\lambda$-closed and F be λ-closed. Assume that U is λ-open set such that $A \cap F \subseteq U$, set $G=X \backslash F$. Then $A \subseteq U \cup G$, since G is λ-open, then $U \cup G$ is λ-open and since A is g - λ-closed, then $\lambda C l(A) \subseteq U \cup G$. Now by Proposition 3.8, $\lambda C l(A \cap F) \subseteq \lambda C l(A) \cap \lambda C l(F)=$
$\lambda C l(A) \cap F \subseteq(U \cup G) \cap F=(U \cap F) \cup(G \cap F)=$ $(U \cap F) \cup \phi \subseteq U$.

The union of two g - λ-closed sets need not be g - λ-closed, as it is shown in the following example:

Example 4.5. Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:
$\lambda(A)=A$, if $A=\phi$ or $\{a, b\}$ or $\{a, c\}$ or $\{b, c\}$
$\lambda(A)=X$, otherwise
Then, if $A=\{a\}$ and $B=\{b\}$. So, A and B are $g-\lambda$ closed, but $A \cup B=\{a, b\}$ is not a g - λ-closed, since $\{a, b\}$ is λ-open and $\lambda C l(\{a, b\})=X$.
Theorem 4.6. If $\lambda: S O(X) \rightarrow P(X)$ is a s-regular s-operation. Then the finite union of $g-\lambda$-closed sets is always a $g-\lambda$ closed set.
Proof. Let A and B be two g - λ-closed sets, and let
$A \cup B \subseteq U$, where U is λ-open. Since A and B are g - λ closed sets, therefore $\lambda C l(A) \subseteq U$ and $\lambda C l(B) \subseteq U$ implies that $\lambda C l(A) \cup \lambda C l(B) \subseteq U$. But by Theorem 3.11, we have $\lambda C l(A) \cup \lambda C l(B)=\lambda \overline{C l}(A \cup B)$. Therefore $\lambda C l(A \cup B) \subseteq U$. Hence we get $A \cup B$ is g - λ-closed set.

The intersection of two g - λ-closed sets need not be g - λ closed, as it is shown in the following example:
Example 4.7. Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation
$\lambda: S O(X) \rightarrow P(X)$ as:
$\lambda(A)=A$, if $A=\{a\}$ and $\lambda(A)=X$, otherwise .
Then the sets $A=\{a, b\}$ and $B=\{a, c\}$ are g - λ-closed sets, since X is their only λ-open superset. But $C=\{a\}=A \cap B$ is not $\quad g$ - λ-closed, since $C \subseteq\{a\} \in S O_{\lambda}(X)$ and $\lambda C l(C)=X \not \subset\{a\}$.

Theorem 4.8. If a subset A of X is g - λ-closed and $A \subseteq B \subseteq \lambda C l(A)$, then B is a g - λ-closed set in X.
Proof. Let A be g - λ-closed set such that $A \subseteq B \subseteq \lambda C l(A)$. Let U be a λ-open set of X such that $B \subseteq \bar{U}$. Since A is g -λ-closed, we have $\lambda C l(A) \subseteq U$. Now $\lambda C l(A) \subseteq$ $\lambda C l(B) \subseteq \lambda C l(\lambda C l(A))=\lambda C l(\bar{A}) \subseteq U$. That
is $\lambda C l(B) \subseteq U$, where U is λ-open. Therefore B is a $g-\lambda$ closed set in X.

The converse of the Theorem 4.8 need not be true as seen from the following example.
Example 4.9. Let $X=\{a, b, c\}$, with $\tau=\{\phi,\{a\},\{c\},\{a, c\},\{b, c\}, X\}$. Let $\lambda: S O(X) \rightarrow P(X)$ be a λ-identity s-operation. If $A=\{a\}$ and $B=\{a, b\}$. Then A and, B are g - λ-closed sets in (X, τ). But $A \subseteq B U ́ \lambda C l(A)$.
Theorem 4.10. Let $\lambda: S O(X) \rightarrow P(X)$ be an s-operation. Then for each $x \in X,\{x\}$ is λ-closed or $X \backslash\{x\}$ is g - λ-closed in (X, τ).
Proof. Suppose that $\{x\}$ is not λ-closed, then $X \backslash\{x\}$ is not λ-open. Let U be any λ-open set such that $X \backslash\{x\} \subseteq U$, then $U=X$. Therefore $\lambda C l(X \backslash\{x\}) \subseteq U$. Hence $X \backslash\{x\}$ is $g-\lambda$-closed.

Proposition 4.11. A subset A of (X, τ) is g - λ-closed if and only if $\lambda C l(\{x\}) \cap A \neq \phi$, holds for every $x \in \lambda C l(A)$.
Proof. Let U be a λ-open set such that $A \subseteq U$ and let $x \in \lambda C l(A)$. By assumption, there exists a point $z \in \lambda C l(\{x\})$ and $z \in A \subseteq U$. It follows from Proposition 3.6, that $U \cap\{x\} \neq \phi$, hence $x \in U$, implies $\lambda C l(A) \subseteq U$. Therefore A is g - λ-closed.
Conversely, suppose that $x \in \lambda C l(A)$ such that $\lambda C l(\{x\}) \cap A=\phi$. Since, $\lambda C l(\{x\})$ is λ-closed. Therefore, $X \backslash \lambda C l(\{x\})$ is λ-open set in X. Since $A \subseteq X \backslash \lambda C l(\{x\})$ and A is g - λ-closed implies that $\lambda C l(A) \subseteq X \backslash \lambda C l(\{x\})$ holds and hence $x \notin \lambda C l(A)$ a contradiction. Therefore $\lambda \operatorname{Cl}(\{x\}) \cap A \neq \phi$.

Theorem 4.12. If a subset A of X is g - λ-closed set in X.Then $\lambda C l(A) \backslash A$ does not contain any non empty λ closed set in X.
Proof. Let A be a g - λ-closed set in X. We prove the result by contradiction. Let F be a λ-closed set such that $F \subseteq \lambda C l(A) \backslash A$ and $F \neq \phi$. Then $F \subseteq X \backslash A$ which
implies $A \subseteq X \backslash F$. Since A is g - λ-closed and $X \backslash F$ is λ-open set, therefore $\lambda \operatorname{Cl}(A) \subseteq X \backslash F$, that is $F \subseteq X \backslash \lambda C l(A)$.
Hence $F \subseteq \lambda C l(A) \cap X \backslash \lambda C l(A)=\phi$. This shows that $F=\phi$ which is a contradiction. Hence $\lambda C l(A) \backslash A$ does not contains any non empty λ-closed set in X.

Lemma 4.13. Let A be a subset of a topological space (X, τ). If $\lambda d(A) \subseteq U$ for U is λ-open, then $\lambda d(\lambda d(A)) \subseteq U$, where λ is s-regular.
Proof. Suppose $\quad x \in \lambda d(\lambda d(A))$ but $\quad x \notin U$. Then $x \notin \lambda d(A)$ and so, for some λ-open set $V, x \in V$ and $A \cap V \subseteq\{x\}$, but $x \in \lambda d(\lambda d(A))$ implies that there exists $y \in \lambda d \overline{(A)} \cap V \backslash\{x\}$. Now, $y \in U \cap V$ and $y \in \lambda d(A)$ and so $\phi \neq A \cap U \cap V \cap X \backslash\{y\} \subseteq A \cap V \subseteq\{x\}$. It follows that $x \in U$ which is contradiction.

Theorem 4.14. If λ is s-regular s-operation, then the λ derived set is g - λ-closed.
Proof. If A is any subset of a topological space (X, τ) with $\lambda d(A) \subseteq U$ for U is λ-open. Then by Lemma 4.13 $\lambda C l(\lambda d(A))=\lambda d(\lambda d(A)) \cup \lambda d(A) \subseteq U$.

Theorem 4.15. A subset A of a topological space (X, τ) is g -λ-open if and only if $F \subseteq \lambda \operatorname{Int}(A)$ whenever $F \subseteq A$ and F is λ-closed in (X, τ).
Proof. Let A be g - λ-open and $F \subseteq A$ where F is λ closed. Since $X \backslash A$ is g - λ-closed and $X \backslash F$ is a λ-open set containing $X \backslash A$ implies $\lambda C l(X \backslash A) \subseteq X \backslash F$. By Proposition 3.10, $\quad X \backslash \lambda \operatorname{Int}(A) \subseteq X \backslash F$. That is $F \subseteq \lambda \operatorname{Int}(A)$.
Conversely, suppose that F is λ-closed and $F \subseteq A$, implies that $F \subseteq \lambda \operatorname{Int}(A)$. Let $X \backslash A \subseteq U$, where U is λ open. Then $X \backslash U \subseteq A$, where $X \backslash U$ is λ-closed. By hypothesis $X \backslash U \subseteq \bar{\lambda} \operatorname{Int}(A)$. That is $X \backslash \lambda \operatorname{Int}(A) \subseteq U$ and then by Proposition 3.10, $\lambda C l(X \backslash A) \subseteq U$. This implies $X \backslash A$ is g - λ-closed and A is g - λ-open.

The union of two g - λ-open sets need not be g - λ-open. As it is shown in the following example:
Example 4.16. Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X) \quad$ as $\lambda(A)=A$ if $A=\{b\}$ and $\quad \lambda(A)=X \quad$ if $A \neq\{b\}$. If $A=\{a\}$ and $B=\{c\}$, then A and B are g - λ-open sets in X, but $A \cup B=\{a, c\} B=\{a, c\}$ is not a g - λ-open set in X.

Theorem 4.17. Let $\lambda: S O(X) \rightarrow P(X)$ be a s-regular soperation and let A and B be two g - λ-open sets in a space X, then $A \cap B$ is also $g-\lambda$-open.
Proof. If A and B are $g-\lambda$-open sets in a space X. Then $X \backslash A$ and $X \backslash B$ are g - $\grave{\lambda}$-closed sets in a space X. By Theorem 4.6, $X \backslash A \cup X \backslash B$ is also g - λ-closed set in X. That is $X \backslash A \cup X \backslash B=X \backslash(A \cap B)$ is a g - λ-closed set in X. Therefore $A \cap B$ is a g - λ-open set in X.

Theorem 4.18. A set A is $g-\lambda$-open if and only if $\lambda \operatorname{Int}(A) \cup X \backslash A \subseteq G$ and G is λ-open implies $G=X$. Proof. Suppose that A is g - λ-open in X. Let G be λ-open and $\quad \lambda \operatorname{Int}(A) \cup X \backslash A \subseteq G$. This implies
$X \backslash G \subseteq X \backslash(\lambda \operatorname{Int}(A) \cup X \backslash A)=X \backslash \lambda \operatorname{Int}(A) \cap A$. That is $X \backslash G \subseteq$ $(X \backslash \lambda \operatorname{Int}(A)) \backslash(X \backslash A)$. Thus $X \backslash G \subseteq \lambda C l(X \backslash A) \backslash(X \backslash A)$, since
$X \backslash \lambda \operatorname{Int}(A)=\lambda C l(X \backslash A)$ Now, $X \backslash G$ is λ-closed and $X \backslash A$ is g - λ-closed, by Theorem 4.12, it follows that $X \backslash G=\phi$. Hence $G=X$.
Conversely, let $\lambda \operatorname{Int}(A) \cup X \backslash A \subseteq G$ and G is λ-open, this implies that $G=X$. Let U be a λ-open set such that $X \backslash A \subseteq U$. Now $\lambda \operatorname{Int}(A) \cup X \backslash A \subseteq \lambda \operatorname{Int}(A) \cup U$ which is clearly, λ-open and so by the given condition $\lambda \operatorname{Int}(A) \cup U=X$, which implies that $\lambda C l(X \backslash A) \subseteq U$. Hence $X \backslash A$ is g - λ-closed, therefore A is g - λ-open.

Theorem 4.19. Every singleton set in a space X is either $g-\lambda$ open or λ-closed.
Proof: Suppose that $\{x\}$ is not $g-\lambda$-open, then by definition $X \backslash\{x\}$ is not g - λ-closed. This implies that by Theorem 4.10, the set $\{x\}$ is λ-closed.

Theorem 4.20. If $\lambda \operatorname{Int}(A) \subseteq B \subseteq A$ and A is g - λ-open, then B is g - λ-open.
Proof. $\quad \lambda \operatorname{Int}(A) \subseteq B \subseteq A \quad$ implies $X \backslash A \subseteq X \backslash B \subseteq X \backslash \lambda \operatorname{Int}(A)$. That \quad is, $\quad X \backslash A \subseteq$ $X \backslash B \subseteq \lambda C l(\overline{X \backslash} \backslash A)$ by Proposition 3.10. Since $X \backslash A$ is \bar{g} -λ-closed, by Theorem 4.8, $X \backslash B$ is g - λ-closed and B is λ-open.

Theorem 4.21. Let (X, τ) be a topological space (X, τ) and $\lambda: S O(X) \rightarrow P(X)$ be an s-operation. The space (X, τ) is $\lambda-T_{1 / 2}$ if and only if Each singleton $\{x\}$ of X is either λ-closed set or λ-open set.
Proof. Suppose $\{x\}$ is not λ-closed. Then by Proposition 4.10, $X \backslash\{x\}$ is g - λ-closed. Now since (X, τ) is $\lambda-T_{1 / 2}, X \backslash\{x\}$ is λ-closed i.e. $\{x\}$ is λ-open.
Conversely. Let A be any g- λ-closed set in (X, τ) and $x \in \lambda C l(A)$. By (2) we have $\{x\}$ is λ-closed or λ-open. If $\{x\}$ is λ-closed then $x \notin A$ will imply $x \in \lambda C l(A) \backslash A$ which is not possible by Proposition 4.12. Hence $x \in A$. Therefore, $\lambda C l(A)=A$, i.e. A is λ-closed. So (X, τ) is $\lambda-T_{1 / 2}$. On the other hand, if $\{x\}$ is λ-open then as $x \in \lambda C l(A),\{x\} \cap A \neq \phi$. Hence $x \notin A$. So A is λ closed.

$5(\lambda, \gamma)^{*}$-Continuous and $(\lambda, \gamma)^{*}$-Open Functions

In this section, some types of continuous functions via soperations are introduced and investigated. Several properties of these functions are obtained.

Throughout, $(X, \tau),(Z, \rho)$ and (Y, σ) are topological spaces and λ, η and γ are s-operations on the family of semi open sets of the topological spaces respectively.
Definition 5.1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be (λ, γ)-continuous, if for each x of X and each γ-open set V of Y containing $f(x)$, there exists a λ-open set U of X such that $x \in U$ and $f(U) \subseteq V$.
Theorem 5.2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function, then f is (λ, γ)-continuous if and only if for each γ-open set
B in $Y, f^{-1}(B)$ is λ-open in X.
Proof. Let f be a (λ, γ)-continuous and $B \in S O_{\gamma}(Y)$, let $A=f^{-1}(B)$. We show that A is λ-open in X. For this, let $x \in A$, then it implies that $f(x) \in B$. Hence, by hypothesis, there exists $A_{x} \in S O_{\lambda}(X)$ such that $x \in A_{x}$ and $f\left(A_{x}\right) \subseteq B$. Then $A_{x} \subseteq f^{-1}\left(f\left(A_{x}\right)\right) \subseteq f^{-1}(B)=A$. Thus $A=\bigcup\left\{A_{x}: x \in A\right\}$. It follows that A is λ-open in X.
Conversely, let $\quad x \in X$ and $B \in S O_{\gamma}(Y) \quad$ such that $f(x) \in B$. Let $A=f^{-1}(B)$. By hypothesis, A is λ open in X and also we have $x \in f^{-1}(B)=A$ as $f(x) \in B$. Thus, $f(A)=f\left(f^{-1}(B)\right) \subseteq B$. Hence f is $(\lambda, \gamma)^{*}$-continuous.

Theorem 5.3. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the following statements are equivalent:
(1) f is $(\lambda, \gamma)^{*}$-continuous.
(2) The inverse image of each γ-closed set in Y is a λ closed set in X.
(3) $\quad \lambda C l\left(f^{-1}(V)\right) \subseteq f^{-1}(\gamma C l(V))$, for every $V \subseteq Y$.
(4) $f(\lambda C l(U)) \subseteq \gamma C l(f(U))$, for every $U \subseteq X$.
(5) $\lambda B d\left(f^{-1}(V)\right) \subseteq f^{-1}(\gamma B d(V))$, for every $V \subseteq Y$
(6) $f(\lambda d(U)) \subseteq \gamma C l(f(U))$, for every $U \subseteq X$.
(7) $f^{-1}(\gamma \operatorname{Int}(V)) \subseteq \lambda \operatorname{Int}\left(f^{-1}(V)\right)$, for every $V \subseteq Y$.
Proof. (1) \Rightarrow (2): Let $F \subseteq Y$ be γ-closed. Since f is (λ, γ)-continuous, $f^{-1}(\bar{Y} \backslash F)=X \backslash f^{-1}(F)$ is λ-open. Therefore, $f^{-1}(F)$ is λ-closed in X.
(2) \Rightarrow (3): Since $\gamma C l(V)$ is γ-closed for every $V \subseteq Y$, then $f^{-1}(\gamma C l(V)) \quad$ is λ-closed. \quad Therefore $\lambda C l\left(f^{-1}(V)\right) \subseteq \lambda C l\left(f^{-1}(\gamma C l(V))\right)=f^{-1}(\gamma C l(V))$.
(3) \Rightarrow (4): \quad Let $\quad U \subseteq X$ and $f(U)=V$. Then $\lambda C l\left(f^{-1}(V)\right) \subseteq f^{-1}(\gamma C l(V))$. Thus $\lambda C l(U) \subseteq \lambda C l\left(f^{-1}(f(U))\right) \subseteq f^{-1}(\gamma C l(f(U)))$ then we get $f(\lambda C l(U)) \subseteq \gamma C l(f(U))$.
(4) \Rightarrow (2): \quad Let $W \subseteq Y \quad$ be a γ-closed set and $U=f^{-1}(W)$. This implies that $f(\lambda C l(U)) \subseteq \gamma C l(f(U))=\gamma C l\left(f\left(f^{-1}(W)\right)\right) \subseteq \gamma C l(W)=W$.

Thus $\lambda C l(U) \subseteq f^{-1}(f(\lambda C l(U))) \subseteq f^{-1}(W)=U$. So U is λ-closed.
(2) $\Rightarrow(\mathbf{1})$: Let $V \subseteq Y \quad$ be an γ-open set, then $Y \backslash V$ is γ closed. Hence, $f^{-1}(Y \backslash V)=X \backslash f^{-1}(V)$ is λ-closed in X and so $f^{-1}(V)$ is γ-open in X.
(5) \Rightarrow (7): Let $\quad V \subseteq Y$, then by hypothesis, $\left.\lambda B d\left(f^{-1}(V)\right) \subseteq f^{-1}(\gamma B d \overline{(V})\right)$. This implies that $f^{-1}(V) \backslash \lambda \operatorname{Int}\left(f^{-1}(V)\right) \subseteq f^{-1}(V \backslash \gamma \operatorname{Int}(V))=f^{-1}(V) \backslash f^{-1}(\gamma \operatorname{Int}$ Hence we get $f^{-1}(\gamma \operatorname{Int}(V)) \subseteq \lambda \operatorname{Int}\left(f^{-1}(V)\right)$.
(7) \Rightarrow (5): Let $V \subseteq \bar{Y}$, then by hypothesis, $f^{-1}(\gamma \operatorname{Int}(V)) \subseteq \lambda \operatorname{Int}\left(f^{-1}\left(V_{-1}\right)\right) . \quad$ Implies \quad that $f^{-1}(V) \backslash \lambda \operatorname{Int}\left(\overline{f^{-1}}(V)\right) \subseteq f^{-1}(V) \backslash f^{-1}(\gamma \operatorname{Int}(V)) \quad$ then $\lambda B d\left(f^{-1}(V)\right) \subseteq f^{-1}\left(\gamma B d\left(V_{*}\right)\right)$.
$(1) \Rightarrow(6)$: Since f is $(\lambda, \gamma)^{*}$-continuous and by (4), we
have $\quad f(\lambda C l(U)) \subseteq \gamma C l(f(U))$ for each $U \subseteq X$. So $f(\lambda d(U)) \subseteq \gamma C l(\bar{f}(U))$.
(6) $\Rightarrow(\mathbf{1})$: Let V be a γ-closed subset of Y and let $f^{-1}(V)=W$,then by hypothesis, $f(\lambda d(W)) \subseteq \gamma C l(f(W))$. Thus
$\left.f\left(\lambda d\left(f^{-1}(\bar{V})\right)\right) \subseteq \gamma C l\left(f^{-1}\left(f^{-1}\right)\right)\right) \subseteq \gamma C l(V)=V$.
Hence, $\lambda d\left(f^{-1}(\bar{V})\right) \subseteq f^{-1}(V)$ so by Proposition 3.4, $f^{-1}(V)$ is λ-closed set. Therefore, by part (2) of this theorem f is (λ, γ)-continuous.
(1) \Rightarrow (7): Let $V \subseteq Y$, then $f^{-1}(\gamma \operatorname{Int}(V))$ is λ-open set in X.Thus
$f^{-1}(\gamma \operatorname{Int}(V))=\lambda \operatorname{Int} f^{-1}(\gamma \operatorname{Int}(V)) \subseteq \lambda \operatorname{Int}\left(f^{-1}(V)\right)$. The refore, $f^{-1}(\gamma \operatorname{Int}(V)) \subseteq \lambda \operatorname{Int}\left(f^{-1}(V)\right)$.
$(7) \Rightarrow(\mathbf{1})$: Let $V \subseteq Y$ be an γ-open set. Then $f^{-1}(V)=f^{-1}(\gamma \operatorname{Int}(\bar{V})) \subseteq \lambda \operatorname{Int}\left(f^{-1}\left(V_{*}\right)\right) . \quad$ Therefore, $f^{-1}(V)$ is λ-open. Hence f is $(\lambda, \gamma)^{*}$-continuous.

Proposition 5.4. If the functions $f:(X, \tau) \rightarrow(Z, \rho)$ is $(\lambda, \eta)^{*}$-continuous and $g:(Z, \rho) \rightarrow(Y, \sigma)$ is $(\eta, \gamma)_{*}^{*}-$ continuous, then $g \circ f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$ continuous.
Proof. Let $V \in S O_{\gamma}(Y)$. Then $g^{-1}(V) \in S O_{\eta}(Z)$ and $f^{-1}\left(g^{-1}(V)\right) \in S O_{\lambda}\left(X^{k}\right)$. This implies ${ }^{\eta}$ that $(g \circ f)^{-1}(V) \in S O_{\lambda}^{\lambda}(X)$. Therefore, $g \circ f:(X, \tau) \rightarrow\left(Y^{\lambda}, \sigma\right)$ is $(\lambda, \gamma)^{*}$-continuous.

Definition 5.5. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $(\lambda, \gamma)^{*}$-open $\left((\lambda, \gamma)^{*}\right.$-closed $)$, if for any λ-open (λ closed) set A of $(X, \tau), f(A)$ is γ-open (γ-closed $)$.

Theorem 5.6. Suppose that $* f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$-continuous and $(\lambda, \gamma)^{*}$-closed function, then:
(1) For every $g-\lambda$-closed set A of (X, τ) the image $f(A)$ is a $g-\gamma$-closed set.
(2) For every $g-\gamma$-closed set B of (Y, σ) the inverse $\operatorname{set} f^{-1}(B)$ is a $g-\lambda$-closed set.
Proof. (1) Let V be any γ-open set in (Y, σ) such that $f(A) \subseteq V$. Then by Theorem 5.2, $f^{-1}(V)$ is λ-open. Since A is $g-\lambda$-closed and $A \subseteq f^{-1}(V)$, we have $\lambda C l(A) \subseteq f^{-1}(V)$ and hence we get $f(\lambda C l(A)) \subseteq V$. By assumption $f(\lambda C l(A))$ is a γ-closed set. Therefore, $\gamma C l(f(A)) \subseteq \gamma C l(f(\lambda C l(A)))=f(\lambda C l(A)) \subseteq V$. This implies that $f(A)$ is $g-\gamma$-closed.
(2) Let U be any λ-open set such that $f^{-1}(B) \subseteq U$. Let $H=\lambda C l\left(f^{-1}(B)\right) \cap(X \backslash U)$. Then H is λ-closed in (X, τ). This implies $f(H)$ is γ-closed set in Y. Since $f(H)=f\left(\lambda C l\left(f^{-1}(B)\right) \cap X \backslash U\right) \subseteq \gamma C l(B) \cap f(X \backslash U)$ This implies that $f(H)=\phi$ and since f is a function, hence $H=\phi$. Therefore, $\lambda C l\left(f^{-1}(B)\right) \subseteq U$. This implies $f^{-1}(B)$ is $g-\lambda$-closed.

Theorem 5.7. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$ open if and only if $f(\lambda \operatorname{Int}(A)) \subseteq \gamma \operatorname{Int}(f(A))$ for all $A \subseteq X$.
Proof. Let $A \subseteq X$ and let $x \in \lambda \operatorname{Int}(A)$. Then there exists $U_{x} \in S O_{\lambda}(X) \quad$ such that $\quad x \in U_{x} \subseteq A$. So
$f(x) \in f\left(U_{x}\right) \subseteq f(A) \quad$ and \quad by \quad hypothesis, $f\left(U_{x}\right) \in S O_{\gamma}^{x}(\bar{Y})$. Hence $f(x) \in \gamma \operatorname{Int}(f(A))$. Thus $f(\lambda \operatorname{Int}(A)) \stackrel{\gamma}{\subseteq} \underset{\operatorname{Int}}{ }(f(A))$.
Conversely, let $U \in S O_{\lambda}(X)$. Then by hypothesis, we get $f(\lambda \operatorname{Int}(U)) \subseteq \gamma \operatorname{Int}(f(U))$. Since $\lambda \operatorname{Int}(U)=U$ as U is λ-open. Also $\quad \gamma \operatorname{Int}(f(U)) \subseteq f(U)$. Hence $f(U)=\gamma \operatorname{Int}(f(U))$. Thus $f(U)$ is γ-open in Y. So f is $(\lambda, \gamma)^{*}$-open.

Theorem 5.8. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$ open if and only if $\lambda \operatorname{Int}\left(f^{-1}(B)\right) \subseteq f^{-1}(\gamma \operatorname{Int}(B))$ for all $B \subseteq Y$.
Proof. Let $B \subseteq Y$ * since $\lambda \operatorname{Int}\left(f^{-1}(B)\right)$ is λ-open set in X and f is $(\bar{\lambda}, \gamma)^{*}$-open function, so $f\left(\lambda \operatorname{Int}\left(f^{-1}(B)\right)\right)$ is $\quad \gamma$-open set in $\quad Y$.We have $f\left(\lambda \operatorname{Int}\left(f^{-1}(B)\right)\right) \subseteq f\left(f^{-1}(B)\right) \subseteq B$.
Hence $f\left(\lambda \operatorname{Int}\left(f^{-1}(B)\right)\right) \subseteq \gamma \operatorname{Int}(\bar{B})$ by hypothesis. Therefore $\lambda \operatorname{Int}\left(f^{-1}(B)\right) \subseteq f^{-1}(\gamma \operatorname{Int}(B))$.
Conversely, let $A \subseteq X$, then $f(A) \subseteq Y$. Hence by hypothesis, we obtain $\lambda \operatorname{Int}(A) \subseteq \lambda \operatorname{Int}\left(f^{-1}(f(A))\right) \subseteq f^{-1}(\gamma \operatorname{Int}(f(A))) . \quad \operatorname{Im}-$ plies that
$f(\lambda \operatorname{Int}(A)) \subseteq f\left(f^{-1}(\gamma \operatorname{Int}(f(A)))\right) \subseteq \gamma \operatorname{Int}(f(A))$. Thus $f(\lambda \operatorname{Int}(A)) \subseteq \gamma \operatorname{Int}\left(f\left(A_{*}\right)\right)$, for all $\bar{A} \subseteq X$. Hence, by Theorem 5.7, \bar{f} is (λ, γ)-open.
Theorem 5.9. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$ open if and only if $f^{-1}(\gamma C l(B)) \subseteq \lambda C l\left(f^{-1}(B)\right)$ for every subset B of Y.
Proof. Let $B \subseteq Y$ and let $x \in f^{-1}(\gamma C l(B))$, then $f(x) \in \gamma C l(B)$. Let $U \in S O_{\lambda}(X)$ such that $x \in U$. By hypothesis, $f(U) \in S O_{\gamma}(Y)$ and $f(x) \in f(U)$. Thus $f(U) \cap B \neq \phi$ and hence $U \cap f^{-1}(B) \neq \phi$. Therefore, $x \in \lambda C l\left(f^{-1}(B)\right)$. \quad so we obtain $f^{-1}(\gamma C l(B)) \subseteq \lambda C l\left(f^{-1}(B)\right)$.
Conversely, let $B \subseteq Y$, then $(Y \backslash B) \subseteq Y$. By hypothesis, $f^{-1}(\gamma C l(Y \backslash B)) \subseteq \lambda C l\left(f^{-1}(Y \backslash B)\right)$. Implies that $X \backslash \lambda C l\left(f^{-1}(Y \backslash \bar{B})\right) \subseteq X \backslash f^{-1}(\gamma C l(Y \backslash B))$. Hence $X \backslash \lambda C l\left(X \backslash f^{-1}(B)\right) \subseteq X \backslash f^{-1}(Y \backslash \gamma \operatorname{Int}(B))$. Then
$\lambda \operatorname{Int}\left(f^{-1}(B)\right) \subseteq f^{-1}(\gamma \operatorname{In} n t(B))$. Now by Theorem 5.8, it follows that f is (λ, γ)-open.

Theorem 5.10. Let $f:(X, \tau) \rightarrow(Z, \rho) \quad$ and $g:(Z, \rho) \rightarrow(Y, \sigma)$ be two *unctions such that $g \circ f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$-continuous. Then:
(1) If g is a $(\eta, \gamma)^{*}$-open injection, then f is $(\lambda, \eta)^{*}$ continuous.
$) \subseteq \gamma(\mathbb{2})(B 1 f) f f(i S \text { a }(B A) \eta)^{*}$-open surjection, then g is $(\eta, \gamma)^{*}-$ continuous.
Proof. (1) Let $U \in S O_{\eta}(Z)$. Since g is $(\eta, \gamma)^{*}$-open, then $g(U) \in S O_{\gamma}(Y)$. Also since $g \circ f$ is (λ, γ)-continuous. Therefore, we have $(g \circ f)^{-1}(g(U)) \in S O_{\lambda}(X)$. Since g is an injection function, so we have $(g \circ f)^{-1}(g(U))=\left(f^{-1} \circ g^{-1}\right)(g(U))=\left(f^{-1}\right)\left(g^{-1}(g(U))\right)=f^{-1}(U)$.
Consequently $f^{-1}(U)$ is λ-open in X. This proves that f is $(\lambda, \eta)^{*}$-continuous.
(2) Let $V \in S O_{\gamma}(Y)$. Then $(g \circ f)^{-1}(V) \in S O_{\lambda}(X)$ since
$g \circ f$ is $(\lambda, \gamma)^{*}$-continuous. Also f is $(\lambda, \eta)^{*}$-open, $f\left((g \circ f)^{-1}(V)\right)$ is η-open in Y. Since f is surjective, then:
$f\left((g \circ f)^{-1}(V)\right)=\left(f \circ(g \circ f)^{-1}\right)(V)=\left(f \circ\left(f^{-1} \circ g^{-1}\right)\right)(V)$ Hence g is $(\eta, \gamma)^{*}$-continuous.

Theorem 5.11. Let $f:(X, \tau) \rightarrow(Z, \rho) \quad$ and $g:(Z, \rho) \rightarrow(Y, \sigma)$ are $(\lambda, \eta)^{*}$-closed (resp. open) and $(\eta, \gamma)^{*}$-closed (resp. open) respectively. Then the ${ }_{*}$ composition function $g \circ f:(X, \tau) \rightarrow(Y, \sigma)$ is a $(\lambda, \gamma)^{*}$-closed (resp., (λ, γ)-open $)$ function.
Proof. Obvious.
Theorem 5.12. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $(\lambda, \gamma)^{*}$ closed if and only if $\gamma C l(f(A)) \subseteq f(\lambda C l(A))$, for every subset A of X.
Proof. Suppose f is a $(\lambda, \gamma)^{*}$-closed function and A is an arbitrary subset of X. Then $f(\lambda C l(A))$ is γ-closed set in Y. Since $\quad f(A) \subseteq f(\lambda C l(A))$, we obtain $\gamma C l(f(A)) \subseteq f(\lambda C l(A))$.
Conversely, suppose F is an arbitrary λ-closed set in X. By hypothesis,
we
ob-
$\operatorname{tain} f(F) \subseteq \gamma C l(f(F)) \subseteq f(\lambda C l(F))=f(F)$.
Hence $\gamma C l \overline{(f}(F))=f(F)$. Thus $f(F)$ is γ-closed in Y. It follows that f is (λ, γ)-closed.

Theorem 5.13. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a bijective function. Then the following statements are equivalent:
(1) f is $(\lambda, \gamma)^{*}$-closed.
(2) f is $(\lambda, \gamma)^{*}$-open.
(3) f^{-1} is $(\gamma, \lambda)^{*}$-continuous.

Proof. $(\mathbf{1}) \Rightarrow(2)$: Let $U \in S O_{\lambda}(X)$. Then $X \backslash U$ is λ closed in X. By(1), $f(X \backslash U)$ is γ-closed in Y. But $f(X \backslash U)=f(X) \backslash f(U)=Y \backslash f(U)$. Thus $f(U)$ is γ open in Y. This shows that f is (λ, γ)-open.
$(2) \Rightarrow(3)$: Let A be a subset of X. Since f is $(\lambda, \gamma)^{*}$-open, so by Theorem 5.12, $f^{-1}(\gamma C l(f(A))) \subseteq \lambda C l\left(f^{-1}(f(A))\right)$. This implies that $\gamma C l\left(f^{-1}(A)\right) \subseteq f(\lambda C l(A))$. Thus $\gamma C l\left(\left(f^{-1}\right)^{-1}(A)\right) \subseteq\left(f^{-1}\right)^{-1}(\lambda C l(A)), \quad$ for all $A \subseteq X_{*}$. Then by Theorem 3.1.6, it follows that f^{-1} is $(\gamma, \lambda)^{*}$ continuous.
(3) $\Rightarrow(\mathbf{1})$: Let A be an arbitrary λ-closed subset of X. Since f^{-1} is a $(\gamma, \lambda)^{*}$-continuous. Then by Theorem 3.1.6, $\left(f^{-1}\right)^{-1}(A)$ is γ-closed in Y. But $\left(f^{-1}\right)^{-1}(A)=f(A)$. This means that f is $(\gamma, \lambda)^{*}$-closed.

Definition 5.14. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $(\lambda, \gamma)^{*}$-homeomorphism if it is bijective, $(\lambda, \gamma)^{*}$ continuous and (λ, γ)-open.
Corollary 5.15. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a bijective function, then the following statement are equivalent.
(1) f is $(\lambda, \gamma)^{*}$-homeomorphism.
(2) $f(\lambda C l(A))=\gamma C l(f(A))$ for all $A \subseteq X$.
(3) $\lambda C l\left(f^{-1}(B)\right)=f^{-1}(\gamma C l(B))$ for all $B \subseteq Y$.
(4) $f(\lambda \operatorname{Int}(A))=\gamma \operatorname{Int}(f(A))$ for all $A \subseteq X$.
(5) $\quad \lambda \operatorname{Int}\left(f^{-1}(B)\right)=f^{-1}(\gamma \operatorname{Int}(B))$ for all $B \subseteq Y$.

Proof.(1) $\Leftrightarrow(2)$. Obvious. Follows from Theorem 5.3 and Theofem 5-12. $\left.g^{-1}\right)(V)=g^{-1}(V)$.
) $\overline{\overline{1})} \Leftrightarrow$ (3). Follows from Theorem 5:3 and Theorem 5.9.
$(1) \Leftrightarrow(5)$. Follows from Theorem 5.3 and Theorem 5.8.
$(1) \Leftrightarrow(4)$. We have $\lambda \operatorname{Int}(A)=X \backslash \lambda C l(X \backslash A)$. Thus $f(\lambda \operatorname{Int}(A))=Y \backslash \gamma C l(f(X \backslash A))=Y \backslash \gamma C l(Y \backslash f(A))=\gamma \operatorname{Int}(f(A))$.

Theorem 5.16. Let $f_{*}:(X, \tau) \rightarrow(Y, \sigma)$ be a $(\lambda, \gamma)^{*}$ continuous and $(\lambda, \gamma)^{*}$-closed function. Then:
(1) If f is injective and (Y, σ) is a $\gamma-T_{1 / 2}$ space, then (X, τ) is a $\lambda-T_{1 / 2}$ space.
(2) If f is surjective and (X, τ) is a $\lambda-T_{1 / 2}$ space, then (Y, σ) is a $\gamma-T_{1 / 2}$ space.
Proof. (1) Let A be a $g-\lambda$-closed set in (X, τ). To show that A is λ-closed. By Theorem 5.6, we have $f(A)$ is $g-\gamma$-closed. Since (Y, σ) is $\gamma-T_{1 / 2}, f(A)$ is a γ-closed set. Since f is injective and (λ, γ)-continuous, $f^{-1}(f(A))=A$ is a λ-closed set in X. Hence (X, τ) is a $\lambda-T_{1 / 2}$ space.
(2) Let B be a $g-\gamma$-closed set in (Y, σ). By Theorem 5.6, $f^{-1}(B)$ is $g-\lambda$ - closed. Since (X, τ) is a $\lambda-T_{1 / 2}$ space, $f^{-1}(B)$ is λ-closed. Since f is surjective and $(\lambda, \gamma)^{*}$ continuous, $f\left(f^{-1}(B)\right)=B$ is a γ-closed set in Y. Therefore (Y, σ) is $\gamma-T_{1 / 2}$.

References

[1] Alias B. Khalaf and Sarhad F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).
[2] B. Ahmad, S. Hussain, Properties of γ-operations in topological spaces, Aligarh Bull. Math., 22, No. 1 (2003), 45-51.
[3] P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed set in topology, Indian J. Math., 29(1987). no. 3, 375-382. MR 90a:54004. Zbl 687.54002.
[4] S. Kasahara, Operation-compact spaces, Math. Japonica, 24 (1979), 97105.
[5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.Monthly, 70 (1)(1963), 36-41.
[6] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp.89-96, (1970).

[^0]: - Author is currently one of the staff members at Department of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq. E-mail address: aliasbkhalaf@gmail.com
 - Co-Author is currently one of the staff members at Department of Mathematics, Faculty of Education and School of Science, University of Garmian, Kurdistan-Region, Iraq
 E-mail address: sarhad1983@gmail.com

